Аддитивные технологии

08.06.2016

Перспективы применения аддитивных технологий при производстве дорожно-строительных машин

технологии при производстве дорожно-строительных машин

Основными направлениями развития машиностроения в настоящее время являются: применение новых полимерных, композиционных, интеллектуальных материалов при производстве деталей машин; разработка новых технологических методов, оборудования и процессов производства изделий машиностроения.

Первым шагом на пути создания машины является пространственное проектирование изделий машиностроения с применением компьютерных виртуальных цифровых трехмерных моделей, что стало возможно благодаря внедрению современного программного обеспечения (CAD-программы), моделирования и расчетов (CAE).

Внедрение технологий «трехмерной печати» (3D-печать) обеспечивает возможность создания детали машины или изделия в целом на основе разработанной 3D-модели в кратчайшие сроки и с минимальными потерями материалов. Методы изготовления изделий, основанные на процессе объединения материала с целью создания объекта из данных 3D-модели, получили обобщающее название «аддитивные технологии» (additive).

В этом контексте традиционные машиностроительные технологии, основанные на механической обработке заготовки, при которой происходит удаление части материала (точение, фрезерование), являются «отнимающими» (subtractive).

В основе современных аддитивных технологий лежит метод формирования детали из полимерного композиционного материала путем постепенного наращивания с помощью термического или какого-либо иного воздействия, в результате которого получается деталь необходимой формы с заданными размерами. В настоящее время существует уже более 30 различных типов аддитивных технологических процессов.

Основными преимуществами аддитивных технологий перед традиционными являются:

• сокращение трудоемкости изготовления;
• сокращение сроков проектирования и изготовления детали;
• снижение себестоимости проектирования и изготовления детали;
• экономия машиностроительных материалов. Время возникновения аддитивных
технологий относится к концу 80-х годов прошлого века. Пионером в этой области является компания 3D Systems (США).

Первая классификация аддитивных технологических методов производства деталей была приведена в стандарте ASTM F2792.1549323-1 (США), в значительной степени устаревшая за последние двадцать лет в связи с бурным развитием технологического оборудования.

1 сентября 2015 года приказом Рос-стандарта создан технический комитет «Аддитивные технологии» для разработки терминов, определений и стандартов, относящихся к ним.

Разработка классификации аддитивных технологий с учетом разнообразия применяемых методов, материалов и оборудования является непростой задачей.

Во-первых, следует выделить два направления развития аддитивных технологий по принципу формирования детали

Направления развития аддитивных технологий по принципу формирования детали
 принцип формирования детали

Первое направление предусматривает формирование детали путем объединения материала, распределенного на рабочей поверхности платформы технологического оборудования (Bed deposition). После окончания процесса изготовления остается некоторый объём материала, который может использоваться для формирования следующей детали.

Процессы объединения материала, распределенного на платформе, заложены в основу различных видов технологического оборудования для производства деталей методами аддитивных технологий:

• SLA – Steriolithography Apparatus;
• SLM – Selective Laser Melting;
• DMLS – Direct metal laser sintering;
• EBM – Electron Beam Melting;
• SHS – Selective Heat Sintering;
• MIM – Metal Injection Molding;
• Ink-Jet или Binder jetting;
• UAM – Ultrasonic additive manufacturing;
• LOM – Laminated Object Manufacturing.

Второе направление формирования деталей – путем прямого осаждения материала (Direct deposition). В этом случае изделие формируется послойно непосредственно из разогретого до необходимой температуры материала, поступающего на рабочую платформу из специального распределяющего устройства.

На принципе прямого осаждения материала построены следующие виды технологического оборудования для производства деталей методами аддитивных технологий:

• CLAD – Construction Laser Additive Di-recte;
• EBDM – Electron beam Direct Manufacturing;
• MJS – Multiphase Jet Solidification;
• BPM – Ballistic particle manufacturing;
• MJM – Multi jetting Material.

Классификация аддитивных технологий по агрегатному состоянию материала, используемого при формировании
детали

Классификация аддитивных технологий по агрегатному состоянию материала, используемого при формировании детали
Классификация аддитивных технологий по агрегатному состоянию материала,

Классификация аддитивных технологий по виду используемого материала

Классификация аддитивных технологий по виду используемого материала
Классификация аддитивных технологий

В зависимости от вида и исходной формы материала, используемого для изготовления деталей, различают виды аддитивных технологий

Классификация аддитивных технологий по виду и форме материала, используемого для изготовления деталей
Классификация аддитивных технологий по виду и форме материала

Фидсток (Feedstock) – международное название гранулированной смеси порошка и связующего материала.

Очевидно, что для производства исходных материалов, используемых при формировании деталей с помощью аддитивных технологий, применяются различные виды специального технологического оборудования, перечисление и описание которых не предусмотрено рамками данной статьи.

Процесс создания изделия с применением аддитивных технологий можно представить в виде последовательности действий

Структура аддитивного технологического процесса производства изделий машиностроения
Структура аддитивного технологического процесса производства

В соответствии с представленным на рис. 5 алгоритмом на первом этапе создания изделия осуществляется разработка 3D-модели с использованием CAD-программы в соответствии с техническим заданием и требованиями стандартов.

После этого необходимо экспортировать данные файла программы твердотельного моделирования в формат, воспринимаемый программой управляющей машины аддитивного производства (например, «STL»).
Перед следующим этапом проводится выявление возможных дефектов модели. Модель, предназначенная для 3D-печати, должна быть герметичной, монолитной и не содержать полых стенок, что обеспечивается с помощью специальных программ.

Далее осуществляется преобразование информации из STL-файла в команды, следуя которым 3D-принтер производит изделие, это так называемый G-код. Во время этой процедуры следует выбрать нужный масштаб детали, правильное положение в пространстве, а также точно позиционировать модель на рабочей поверхности. От этого зависит результат всего процесса, прочность, шероховатость поверхности детали и расход материала.

После выполнения настроек происходит разделение модели на слои материала, «укладываемые» в тело детали за один рабочий цикл аддитивной машины. Этот процесс получил название нарезка (slicing – англ.). Нарезка производится с помощью программного обеспечения, поставляемого с машиной, или с помощью специальных средств (Skein-forge, Slic3r, KISSlicer, MakerWare и др.).

Полученный на предыдущей стадии G-код передается на 3D-принтер через флеш-память или через USB-кабель.
В процессе подготовки и настройки аддитивной машины выполняются калибровка, предварительный нагрев рабочих органов, выбор модельного материала и задание зависящих от него параметров режимов работы оборудования.

На устройствах профессионального уровня этот этап может быть совмещен с процедурами процесса нарезки.

После того как выполнены все подготовительные операции, запускается процесс печати, то есть послойного объединения материалов. Его продолжи тельность зависит от типа технологии и выбранных параметров точности и качества изготовления детали.

Созданную деталь при необходимости подвергают дополнительным технологическим воздействиям: удаление поддерживающих опор, химическая или термическая обработка, финишная доводка рабочих поверхностей.
На заключительной стадии производства проводится контроль качества изготовления детали, включающий проверку соответствия нормативным требованиям геометрических размеров, показателей физико-механических свойств и других параметров, влияющих на потребительские свойства изделия.

Для строительных и транспортно-технологических машин перспективы применения аддитивных технологий в первую очередь очевидны при производстве следующих видов деталей:

• пластиковые корпусные детали электрических приборов;
• комплектующие гидравлического оборудования (уплотнения направляющих поршней и поршни гидроцилиндров, разъемные соединения, элементы распределителей, насосов и гидромоторов);
• изготовление патрубков систем охлаждения и питания двигателя;
• детали отделки кабины оператора: рукояти рычагов, панели, переключатели, джойстики и др.;
• корпусные, предохранительные, шарнирные и другие детали навесного рабочего оборудования;
• втулки шарниров подвижных соединений, работающие в качестве подшипника скольжения рабочего оборудования.

Особый интерес представляет возможность применения аддитивных технологий для быстрого прототипирования при разработке рабочего оборудования строительных машин.

Разработка прототипа (макета) рабочего органа является важнейшим этапом создания машины. Прототип готового изделия не только дает представление о его внешнем виде и габаритно-массовых характеристиках, но также позволяет провести оценку соответствия достигнутых эксплуатационных свойств требованиям технического задания.

Рассмотрим процедуру прототипирования с применением аддитивных технологий на примере ковша экскаватора.
Быстрое прототипирование при проектировании новых модификаций ковшей обеспечивает:

• визуализацию внешнего вида ковша;
• подтверждение совместимости кинематических параметров с базовой машиной;
• возможность оценки заполнения ковша грунтом и его последующей разгрузки, что играет немаловажную роль при разработке грунтов, обладающих высокой липкостью или примерзаемостью;
• возможность изучения процесса стружкообразования при резании грунта ковшом;
• выявление зон, подверженных наибольшему абразивному износу при работе;
• проработку технологических процессов сборки, сварки, механической обработки и покраски;
• обучение сотрудников. Широкие возможности предоставляет
разнообразие типов и свойств модельных материалов, применяемых для прототипирования. Например, модель, созданная из прозрачного полимера, позволяет исследовать не только взаимодействие поверхностей рабочего органа экскаватора с грунтом при заполнении, но также и процессы, происходящие в разрабатываемом грунте. Это позволяет подобрать оптимальную форму ковша, обеспечивающую наименьшие сопротивление при копании грунта.

 ковш эксковатора
Цифровая модель прототипа ковша эксковатора

Анализ модели с помощью метода конечных элементов позволяет оценить распределение напряжений, возникающих в конструкции в процессе копания

разработки грунта
Распределение внутренних напряжений в конструкции ковша экскаватора в процессе разработки грунта

Создание и испытание прототипа ковша обеспечивает:

• экономию средств на натурные испытания;
• предотвращение ошибок при проектировании и сборке изделия;
• снижение массы ковша;
• повышение эффективности разработки грунта ковшом, что, в свою очередь, обеспечивает снижение расхода топлива;
• повышение безотказности и долговечности рабочего оборудования;
• возможность оценки срока службы ковша и интенсивности изнашивания зубьев в процессе разработки грунтов различных категорий. Процесс создания ковша экскаватора
с применением макета состоит из следующих этапов:
• разработка цифровой 3D-модели ковша, проведение расчетов с помощью специализированных программных продуктов.
• изготовление прототипа с помощью аддитивных технологий: подготовка модели к прототипированию, обоснование масштаба для макета и формирование ковша из термопластичного материала.
• проведение испытаний и экспериментальных исследований прототипа ковша.
• обработка и анализ результатов исследований, внесение необходимых изменений в конструкцию ковша, доработка конструкторской документации, согласование и начало производства.

Ковш экскаватора, изготовленный с учетом результатов
Ковш экскаватора, изготовленный с учетом результатов исследований прототипа

При ремонте транспортно-технологических машин возможно использование аддитивных технологий для восстановления изношенных и поврежденных металлических деталей методами LENS, CLAD, DMD, что позволяет минимизировать применение ручного труда, повысить производительность и качество ремонта.

А вот изготовление деталей из полимерных материалов для ремонта может быть полезно следующим:

• взамен металлических – мера, снижающая простой техники из-за внезапного
отказа (временная замена). Что особенно актуально в компаниях, не проводящих мероприятия ППР. Для малого бизнеса, эксплуатирующего несколько единиц машин различного назначения, бюджет которого не позволяет содержать сотрудников для закупок запчастей или иметь запас деталей для замены;
• вместо пластиковых позволит печатать детали индивидуального ремонтного размера;
• применение композитных материалов по свойствам, превосходящим параметры исходной детали;
• производство малого количества деталей в электротехнике и гидроприводе;
• мобильность принтеров: возможно размещение в автомобиле;
• относительно низкое энергопотребление.

Немаловажным фактором является и то, что при аддитивном производстве и восстановлении деталей разработчик может находиться на любом удалении от объекта (машины) благодаря широкому использованию компьютерных сетей.

Сканирование поврежденных комплектующих сборочных единиц при помощи 3D-сканера (реинжиниринг) с последующей компьютерной обработкой и печатью открывает перспективы создания универсальных многофункциональных производственно-ремонтных комплексов.
Сканирование существенно увеличивает скорость и точность производства детали, а также снижает расходы на измерительный инструмент. В настоящее время 3D-сканер уже применяется при проведении контроля качества изготовленных деталей на передовых предприятиях.

На сегодняшний день основными проблемами, сдерживающими внедрение аддитивных технологий в производство, являются ограниченный выбор используемых материалов и их высокая стоимость, ограниченность габаритных размеров создаваемых изделий и невысокая производительность оборудования. Но с учетом сложившейся динамики развития аддитивных технологий преодоление этих проблем в ближайшее время вполне реально.
Приведенные в статье результаты получены при разработке проекта № Б1124214, выполняемого в рамках проектной части Государственного задания в сфере научной деятельности за 2016 г.

Список использованной литературы
1. Слюсар, В.И. Фабрика в каждый дом. Вокруг света. — № 1 (2808).
2. Довбыш В.М., Забеднов П.В., Зленко М.А. Статья «Аддитивные технологии и изделия из металла» ГНЦ РФ ФГУП «НАМИ».
3. Зорин В.А. Баурова Н.И., Шакурова А.М. Применение капсулированных материалов при сборке и ремонте резьбовых соединений // Механизация строительства. 2014. № 8(842).
4. Зорин В.А. Баурова Н.И., Шакурова А.М. Исследование структуры капсулированного анаэробного клея // Клеи. Герметики. Технологии. 2014. № 5.
5. Баурова Н.И., Зорин В.А., Приходько В.М. Описание сценариев перехода материала из работоспособного состояния в неработоспособное с использованием уравнения теории катастроф «складка» // Клеи. Герметики. Технологии. 2014. № 8.
6. Баурова Н.И., Зорин В.А., Приходько В.М. Описание процессов деградации свойств материалов с использованием аппарата теории катастроф // Все материалы. Энциклопедический справочник. 2014. № 11.
Баурова Н.И., Сергеев А.Ю. Структурные исследования механизма разрушения клевых соединений после испытаний методом pull-out // Клеи. Герметики. Технологии. 2014. № 4.

Авторы:Зорин В.А., д.т.н., профессор, Полухин Е.В., инженер (МАДИ)

Источник: 3 (119)2016 Строительная техника и технологии

print